UHF RFID读写器编解码模块的FPGA实现

  实现作了重点说明,最后给出了Modelsim软件仿真结果,以及在读写器工作时使用Signaltap逻辑分析仪抓取的数据。

  UHF RFID读写器具有读写距离远、读写速度快等优点,已成功运用于供应链管理、航空管理和后勤管理等诸多领域。本设计依据的协议是EPC C1G2(EPCClassl Generation2)。

  本文介绍了一种读写器的编解码部分由FPGA来完成的设计方案,由FPGA负责前向链路的PIE编码和后向链路的FM0/miller解码,且解码模块可对标签突发传来的数据立即检测并实施解码,实现了较快的解码速率。FPGA选用的是Altera公司的EP1C3T100C6芯片。

  图1所示为RFID系统,主要由PC机、读写器、天线和电子标签组成。读写器与电子标签之间的数据通过天线进行传递。读写器作为RFID系统的一部分,既能与标签通信,又能向PC机传输数据并执行上位机所要求的操作,具有发送、接收和处理数据的能力。读写器系统按其所处理信号的不同,主要由2个部分组成,即处理数字信号的基带部分和处理模拟信号的射频部分。

  EPC C1G2标准具有如下特点:速度快,速率可达40~640 kbps;可以同时读取标签的数量多,om模块理论上能读到1000多个标签;可在密集的读写器环境下工作,能迅速使用变化无常的标签群;存储区域多,可延伸使用用户的内存需求;功能强,om模块具有多种写保护方式,安全性强;通用性强,符合EPC规则;产品价格低,兼容性好。

  EPC C1G2协议规定发送链路(即读写器向标签发送数据)采用的编码方式是脉冲间隔编码(即PIE编码)。读写器每次给标签发送命令,都以帧同步码或前同步码开始所有的通信。帧同步码格式如图2所示,帧同步码由delimiter、数据0和RTcal三部分组成。前同步码格式如图3所示,前同步码由delimiter、数据0、RTcal和TRcal四部分组成,除delimiter外,各部分均以低脉冲PW结尾,且各部分PW的长度必须相同。de limiter的长度固定为12.5s,协议规定允许有5%的误差。delimiter用于给电子标签校准时钟。

  前同步码只用于表明盘存周期开始的Query命令中,其他命令则以帧同步码开始。当Query命令数据中的DR=1、前同步码中的TRcal长度为33.3s时,可设定反向链路(即标签向读写器发送数据)频率最高为640kHz。

  Query命令中M参数值决定了标签返回数据的编码方式,即FM0、miller2、miller4、miller8四种。FM0码在每个数据边界处和数据0中间反相。miller码则是在两个连续的数据0的边界处和数据1的中间反相。miller编码序列每位可包含2、4、8个副载波周期,即miller2、mille r4、miller8三种编码形式。这四种编码方式都以各自特定的帧头开始,而具体选择哪种帧头,则由Query命令中Trext参数值决定,并且在结尾处都有一位“dummyl”作为数据传送的结束标志。

  EPC C1G2协议规定读写器的命令分为选择、盘存、访问3类,而标签的工作状态分为就绪、仲裁、应答、确认、开放、保护、杀死7个状态,读写器命令类型和标签状态如图4所示。读写器依赖3类命令通过改变标签所处的状态,实现对标签群的筛选,以及对单个标签的识别和访问过程。读写器与标签的通信过程略一编者注。

本文由广安市自选模块有限公司发布于技术中心,转载请注明出处:UHF RFID读写器编解码模块的FPGA实现

相关阅读